Philadelphia University

Lecture Notes for 650364

Probability \& Random Variables

Chapter 2:
Lecture 5: Random Variables-Introduction, Distributions, Density and Mass Functions

Department of Communication \& Electronics Engineering

Instructor
 Dr. Qadri Hamarsheh

Email: qhamarsheh@philadelphia.edu.jo
Website: http://www.philadelphia.edu.jo/academics/qhamarsheh

Outlines

1) The Random Variable Concept, Introduction
2) Cumulative Distribution Function (CDF)
3) Probability Density and Mass Functions

The Random Variable Concept, Introduction

\checkmark Variables whose values are due to chance are called random variables.
\checkmark A random variable ($r . v$) is a real function that maps the set of all experimental outcomes of a sample space S into a set of real numbers.

\checkmark We shall represent a random variable by a capital letter (such as X, Y , or W) and any particular value of the random variable by a lower case letter (such as x, y, or w)
\checkmark Given an experiment defined by a sample space S with elements s, we assign to every s a real number $\mathbf{X}(s)$ according to some rule and call $X(s)$ a random variable
\checkmark There are three types of random variables:
l) Discrete Random Variable (random variables have discrete values; the sample space can be discrete, continuous or even mixture of discrete and continuous)
2) Continuous Random Variable (continuous range of values, it cannot be produced from a discrete sample space or a mixed sample space).
3) Mixed Random Variables (less important type of random variables)

- Example: (Discrete Random Variable):
- An experiment consists of rolling a die and flipping a coin. The sample space is shown in Fig. below and the random
variable \mathbf{X} maps the sample space of 12 elements into 12 values of X.
- Function X chosen such that
- A coin Head (H) outcome corresponds to positive values of X that are equal to the numbers that show up on the die.
- A coin is Tail (T) outcome corresponds to the negative values of X that are equal in magnitude to twice the number that shows up on the die

- Example: (Continuous Random Variable)

- Figure below illustrates an experiment where the pointer on a wheel of chance is spun. The sample consists of the numbers in the set $\{0<s \leq 12\}$ and the random variable is defined by the function $X=X(s)=s^{2}$

\checkmark Conditions for a Function to be a Random Variable:
- It not be multivalued

○ The set $\{X \leq x\}$ shall be an event for any real number x
$\circ P\{X \leq x\}$ is equal to the sum of the probabilities of all the elementary events corresponding to $\{X \leq x\}$.
\circ The probabilities of events $\{X=\infty\}$ and $\{X=-\infty\}$ be 0 :

$$
\boldsymbol{P}\{\boldsymbol{X}=\infty\}=\mathbf{0} \boldsymbol{P}\{\boldsymbol{X}=-\infty\}=\mathbf{0}
$$

Probability Distributions

\checkmark A probability distribution consists of the values of a random variable and their corresponding probabilities.
\checkmark There are two kinds of probability distributions: discrete and continuous.
\checkmark If X is discrete, then the values $P(X=a 1), P(X=a 2), \ldots$ tell us everything we need to know about \mathbf{X}.
\checkmark Let \mathbf{X} be a discrete random variable, and suppose that the possible values that it can assume are given by $x 1, x 2, x 3, \ldots$, arranged in some order. Suppose also that these values are assumed with probabilities given by

$$
P\left(X=x_{k}\right)=f\left(x_{k}\right) \quad k=1,2, \ldots
$$

Probability function, also referred to as probability mass function (PMF), given by

$$
P(X=x)=f(x)
$$

\checkmark In general, $f(x)$ is a probability function if

$$
\begin{aligned}
& \text { 1. } f(x) \geq 0 \\
& \text { 2. } \sum_{x} f(x)=1
\end{aligned}
$$

1) The $f(x)$ is a function with nonnegative values
2) The sum of the probabilities of a probability distribution must be 1 .

- Example: When a die is rolled

Value, \boldsymbol{x}	1	2	3	4	5	6
Probability, $P(x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- Example: Construct a discrete probability distribution for the number of heads when three coins are tossed.
- Solution:
- Recall that the sample space for tossing three coins is TTT, TTH, THT, HTT, HHT, HTH, THH, and HHH.
- The outcomes can be arranged according to the number of heads, as shown.

0 heads TTT
 1 head TTH, THT, HTT
 2 heads THH, HTH, HHT
 3 heads HHH

- Finally, the outcomes and corresponding probabilities can be written in a table, as shown.

Outcome, \boldsymbol{x}	0	1	2	3
Probability, $\boldsymbol{P (x)}$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

- Roll two dice, let Y be the maximum of their outcomes.

$\{Y=1\}=P\{(1,1)\}$	$=1 / 36$
$P\{Y=2\}=P\{(1,2),(2,1),(2,2)\}$	$=3 / 36$
$P\{Y=3\}=P\{(1,3),(2,3),(3,1),(3,2),(3,3)\}$	$=5 / 36$
$P\{Y=4\}=P\{(1,4),(2,4),(3,4),(4,1),(4,2),(4,3),(4,4)\}$	$=7 / 36$
$P\{Y=5\}=P\{(1,5),(2,5),(3,5),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\}$	$=9 / 36$
$P\{Y=6\}=P\{(1,6),(2,6),(3,6),(4,6),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$	$=11 / 36$

- Roll two dice, let \mathbf{X} be the sum of their outcomes.

```
P{X=2}=P{(1,1)}
=1/36
P{X=3}=P{(1,2),(2,1)}
= 2/36
P{X=4}=P{(1,3),(2,2),(3,1)}
= 3/36
P{X=5}=P{(1,4),(2,3),(3,2),(4,1)}
=4/36
P{X=6}=P{(1,5),(2,4),(3,3),(4,2),(5,1)}
= 5/36
P{X=7}=P{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}
= 6/36
P{X=8}=P{(2,6),(3,5),(4,4),(5,3),(6,2)}
= 5/36
P{X=9}=P{(3,6),(4,5),(5,4),(6,3)}
=4/36
P{X=10}=P{(4,6),(5,5),(6,4)}
= 3/36
P{X=11}=P{(5,6),(6,5)}
=2/36
P{X=12}=P{(6,6)}
\(=1 / 36\)
```

- A discrete probability distribution can also be shown graphically by labeling the x axis with the values of the outcomes and letting the values on the y axis represent the probabilities for the outcomes.

Cumulative probability Distribution Function (CDF)

\checkmark The probability of the event $\{X \leq x\}$ must depend on x. Denote

$$
P\{X \leq x\}=F_{X}(x) \geq 0
$$

Where x is any real number
We call this function, denoted $F_{X}(x)$ the cumulative probability distribution function (CDF) of the random variable \mathbf{X} (or just the distribution function of X)

\checkmark Properties Distribution Functions:

$$
\begin{array}{ll}
\text { 1. } & F_{X}(-\infty)=P\{X \leq-\infty\}=P(\phi)=0 \\
\text { 2. } & F_{X}(\infty)=P\{X \leq \infty\}=1 \\
\text { 3. } & 0 \leq F_{X}(x) \leq 1 \\
\text { 4. } & F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right) \quad \text { if } \quad x_{1}<x_{2} \\
\text { 5. } & P\left\{x_{1}<X \leq x_{2}\right\}=F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right) \\
\text { 6. } & F_{X}\left(x^{+}\right) \leq F_{X}(x)
\end{array}
$$

\checkmark Distribution Function for Discrete Random Variable:

- The distribution function of a discrete random variable \mathbf{X} can be obtained from its probability function by noting that, for all x in $(-\infty, \infty)$

$$
F(x)=P(X \leq x)=\sum_{u \leq x} f(u)
$$

- If X takes on only a finite number of values $x_{1}, x_{2}, \ldots, x_{n}$, then the distribution function is given by

$$
F(x)=\left\{\begin{array}{lc}
0 & -\infty<x<x_{1} \\
f\left(x_{1}\right) & x_{1} \leq x<x_{2} \\
f\left(x_{1}\right)+f\left(x_{2}\right) & x_{2} \leq x<x_{3} \\
\vdots & \vdots \\
f\left(x_{1}\right)+\cdots+f\left(x_{n}\right) & x_{n} \leq x<\infty
\end{array}\right.
$$

- The distribution function of a discrete random variable \mathbf{X} is given by:

$$
F_{X}(x)=\sum_{i=1}^{N} P\left\{X=x_{i}\right\} u\left(x-x_{i}\right)
$$

- Example:

$$
F_{X}(x)=\frac{1}{4} u(x)+\frac{2}{4} u(x-1)+\frac{1}{4} u(x-2)
$$

Where $u($.$) is the unit step defined by:$

$$
u(x)= \begin{cases}1 & x \geq 0 \\ 0 & x<0\end{cases}
$$

- Example: Suppose that a coin is tossed twice so that the sample space is $S=\{H H, H T, T H, T T\}$. Let \mathbf{X} represent the number of heads that can come up.
- It follows that X is a random variable as in the table

Sample Point	$H H$	$H T$	$T H$	$T T$
X	2	1	1	0

- the probability function corresponding to the random variable X

$$
P(H H)=\frac{1}{4} \quad P(H T)=\frac{1}{4} \quad P(T H)=\frac{1}{4} \quad P(T T)=\frac{1}{4}
$$

Then

$$
\begin{aligned}
& P(X=0)=P(T T)=\frac{1}{4} \\
& P(X=1)=P(H T \cup T H)=P(H T)+P(T H)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
& P(X=2)=P(H H)=\frac{1}{4}
\end{aligned}
$$

The probability function is thus given by

x	0	1	2
$f(x)$	$1 / 4$	$1 / 2$	$1 / 4$

- the distribution function for the random variable \mathbf{X}

Probability Density Function (PDF)

\checkmark Continuous Random Variables: A non-discrete random variable \mathbf{X} is said to be absolutely continuous, or simply continuous, if its distribution function may be represented as

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(u) d u \quad(-\infty<x<\infty)
$$

where the function $f(x)$ has the properties

$$
\begin{aligned}
& \text { 1. } f(x) \geq 0 \\
& \text { 2. } \int_{-\infty}^{\infty} f(x) d x=1
\end{aligned}
$$

\checkmark A function $f(x)$ is more often called a probability density function or simply density function
\checkmark Interval probability that X lies between two different values, say, a and b, is given by

$$
P(a<X<b)=\int_{a}^{b} f(x) d x
$$

\checkmark The probability density function (or density function) (PDF) is defined as the derivative of the distribution function:

$$
f_{X}(x)=\frac{d F_{X}(x)}{d x}
$$

\checkmark Properties of Density Functions:

$$
\begin{array}{|ll|}
\text { 1. } & f_{X}(x) \geq 0 \quad \text { all } x \\
\text { 2. } & \int_{-\infty}^{\infty} f_{X}(x) d x=1 \\
\text { 3. } & F_{X}(x)=\int_{-\infty}^{x} f_{X}(\xi) d \xi \\
\text { 4. } & P\left\{x_{1}<X \leq x_{2}\right\}=\int_{x_{1}}^{x_{2}} f_{X}(x) d x
\end{array}
$$

\checkmark Density Function for Discrete Random Variable (mass function):
\checkmark The density function of a discrete random variable X is given by:

$$
f_{X}(x)=\sum_{i=1}^{N} P\left\{X=x_{i}\right\} \delta\left(x-x_{i}\right)
$$

- Example:

$$
f_{X}(x)=\frac{1}{4} \delta(x)+\frac{2}{4} \delta(x-1)+\frac{1}{4} \delta(x-2)
$$

Where $\boldsymbol{\delta}($.$) is the unit impulse defined by:$

$$
\delta(x)=\frac{d u(x)}{d x} \quad \xrightarrow[0]{\underbrace{1}_{0} \underbrace{\delta(x)}_{x}}
$$

- Example: Let \mathbf{X} have the discrete values in the set

$$
\{-1,-0.5,0.7,1.5,3\} .
$$

The corresponding probabilities are

$$
\{0.1,0.2,0.1,0.4,0.2\}
$$

The distribution function:

$$
\begin{aligned}
F_{X}(x)= & 0.1 u(x+1)+0.2 u(x+0.5)+0.1 u(x-0.7) \\
& +0.4 u(x-1.5)+0.2 u(x-3)
\end{aligned}
$$

$$
\begin{aligned}
P(X \leq 1.5) & =0.1+0.2 \\
& +0.1+0.4=0.8 \\
P(X \leq 2) & =0.1+0.2 \\
& +0.1+0.4=0.8
\end{aligned}
$$

The density function:

$$
\begin{aligned}
f_{X}(x)= & 0.1 \delta(x+1)+0.2 \delta(x+0.5)+0.1 \delta(x-0.7) \\
& +0.4 \delta(x-1.5)+0.2 \delta(x-3)
\end{aligned}
$$

- Example: The corresponding distribution and the density functions for the wheel of chance experiment are shown in Fig.

$$
\begin{aligned}
& P(X \leq 6)=F_{X}(6)=0.5 \\
& \mathrm{OR}=\int_{-\infty}^{6} f_{X}(x) d x=0.5
\end{aligned}
$$

- Example :
a) Find the constant c such that the function

$$
f(x)= \begin{cases}c x^{2} & 0<x<3 \\ 0 & \text { otherwise }\end{cases}
$$

Is a density function,
b) Compute $P(\mathbb{1}<X<2)$.
c) Find the distribution function for the random variable
d) Use the result of (c) to find $P(1<x \leq 2)$.

Solution:

a) using the 2 property

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{3} c x^{2} d x=\left.\frac{c x^{3}}{3}\right|_{0} ^{3}=9 c
$$

and since this must equal l, we have $c=1 / 9$
b)

$$
P(1<X<2)=\int_{1}^{2} \frac{1}{9} x^{2} d x=\left.\frac{x^{3}}{27}\right|_{1} ^{2}=\frac{8}{27}-\frac{1}{27}=\frac{7}{27}
$$

c)

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(u) d u
$$

If $x<0$, then $F(x)=0$.
If $0 \leq x<3$, then

$$
F(x)=\int_{0}^{x} f(u) d u=\int_{0}^{x} \frac{1}{9} u^{2} d u=\frac{x^{3}}{27}
$$

If $x \geq 3$, then

$$
F(x)=\int_{0}^{3} f(u) d u+\int_{3}^{x} f(u) d u=\int_{0}^{3} \frac{1}{9} u^{2} d u+\int_{3}^{x} 0 d u=1
$$

Thus the required distribution function is

$$
F(x)=\left\{\begin{array}{lr}
0 & x<0 \\
x^{3} / 27 & 0 \leq x<3 \\
1 & x \geq 3
\end{array}\right.
$$

d)

$$
\begin{aligned}
P(1<X \leq 2) & =P(X \leq 2)-P(X \leq 1) \\
& =F(2)-F(1) \\
& =\frac{2^{3}}{27}-\frac{1^{3}}{27}=\frac{7}{27}
\end{aligned}
$$

